

Seizing Brazil's potential for low-emission marine fuels

UNLOCKING OPPORTUNITIES IN BIOFUELS UNDER THE IMO NET ZERO FRAMEWORK

BRAZIL CLIMATE SUMMIT NEW YORK
September 2025

Authors, co-authors and participants

Arthur Ramos

Ricardo Pierozzi

Lucas Moino

Santino Lacanna

Peter lamerson

Maurice Jansen

Bruno Vasconcellos

Summit.

Luciana Ribeiro

Jorge Hargrave

Thiago Cardoso

Thais **Esteves**

Fernando **Thiers**

Matheus Munhoz

Luiza Boechat

Rafaela Dalsenter

Pedro Costa

Marina Cançado

About this report

This report sets out BCG's perspective to help Brazilian and global leaders catalyze action, remove barriers, and Objective unlock Brazil's potential in a transforming shipping sector — accelerating the global economy's transition to Net Zero (2020-2050) This report was built for all those willing to drive actions against Climate Change (e.g., investors, board members, Audience executives, entrepreneurs, academia, etc.) focused on leveraging Brazil's green agenda and potential. This document is a compilation of public information and BCG expertise, carefully selected, to bring numbers and Data facts to Climate discussions and decision-making. Its analyses are subject to rapidly evolving technologies and business models and should be revisited and updated accordingly. BCG is thankful to the SB COP Finance Working Group for bringing in the private sector perspective, and to the Special entire Brazil Climate Summit organizing team for their support. We are especially thankful to all Brazilian students thanks at Columbia University who contributed to accelerating the path to Net-Zero. (www.brazilclimatesummit.com)

Disclaimer

© The Boston Consulting Group, Inc. 2025. All Rights Reserved.

This document has been prepared in good faith on the basis of information available at the date of publication without any independent verification. BCG does not guarantee or make any representation or warranty as to the accuracy, reliability, completeness, or currency of the information in this document nor its usefulness in achieving any purpose. Recipients are responsible for assessing the relevance and accuracy of the content of this document. It is unreasonable for any party to rely on this document for any purpose and BCG will not be liable for any loss, damage, cost, or expense incurred or arising by reason of any person using or relying on information in this document. To the fullest extent permitted by law (and except to the extent otherwise agreed in a signed writing by BCG), BCG shall have no liability whatsoever to any party, and any person using this document hereby waives any rights and claims it may have at any time against BCG with regard to the document. Receipt and review of this document shall be deemed agreement with and consideration for the foregoing.

This document is based on a primary qualitative and quantitative research executed by BCG. BCG does not provide legal, accounting, or tax advice. Parties responsible for obtaining independent advice concerning these matters. This advice may affect the guidance in the document. Further, BCG has made no undertaking to update the document after the date hereof, notwithstanding that such information may become outdated or inaccurate. BCG does not provide fairness opinions or valuations of market transactions, and this document should not be relied on or construed as such. Further, any financial evaluations, projected market and financial information, and conclusions contained in this document are based upon standard valuation methodologies, are not definitive forecasts, and are not guaranteed by BCG. BCG has used data from various sources and assumptions provided to BCG from other sources. BCG has not independently verified the data and assumptions from these sources used in these analyses. Changes in the underlying data or operating assumptions will clearly impact the analyses and conclusions.

This document does not purport to represent the views of the companies mentioned in the document. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by BCG.

Apart from any use as permitted under the applicable copyright laws, no part may be reproduced in any form.

Brazil is a global forerunner towards a low-carbon future – its innate advantages could unlock \$2-3T in investments until 2050

A global biofuels leader, the second-largest producer of ethanol and biodiesel worldwide¹

Protagonist in Wind and Solar: LCOE: \$33/MWh and \$15B+/yr in investments²

Green H₂ Hub positioning to capture 10-15% of global exports +2030

Worldwide hub for low-carbon industrial products

Increased Sustainability in wastewater treatment and water supply⁶

#1 CO₂-offset supplier: mitigate up to 1 Gt CO₂e/yr⁵

Zero illegal deforestation through command and control⁷

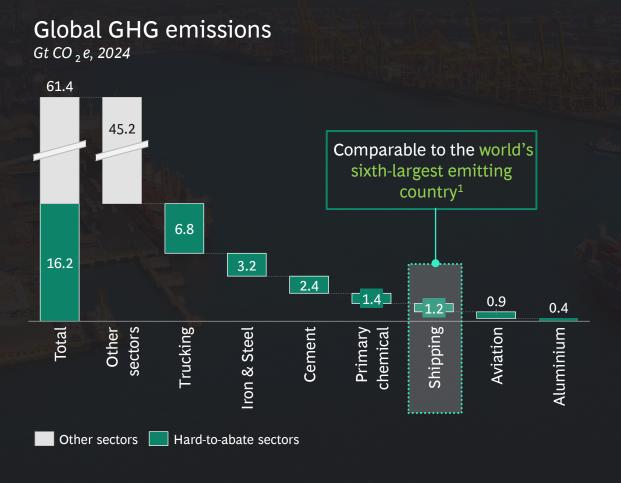
#1 country in Regenerative Agri. at scale (up to 100 Mha including Crop-Livestock-Forest Integration and non-till-farming)

Potential to become a hub for sustainable fuels

Hub for green industrial products and minerals for energy transition

^{1.} Brazil: Biofuels Annual (USDA/FAS), 31 ago 2024; 2. Average Levelized Cost of Energy for wind & Solar plants, considering experts inputs, capacity expansion as disclosed by ONS in 2023, and average renewable energy investments in Brazil between 2015-2022 as reported by UNCTAD in 2023 3. AFOLU: Agriculture, Forestry and Other Land Use; 4. Bloomberg NEF (2025). World Energy Transition Investment; 5. Gibbs, H. K., Rausch, N. F. (2015). Brazil's Soy Moratorium. Science, 347(6220), 377–378; 6. Path toward Sustainability in Wastewater Management in Brazil", International Journal of Environmental Research and Public Health, vol. 20, n.º 16, 2023; 7. Brasil (MMA). PPCDAm – 5ª fase (2023–2027): meta de desmatamento zero até 2030, com foco no combate ao desmatamento ilegal (Portuguese).

BCS Reports highlight the "how to" make opportunities material - today we present the case for sustainable marine fuels A global biofuels leader, the accord largest producer of the case of the case


Green H₂ Hub positioning second-largest producer of to capture 10-15% of global ethanol and biodiesel worldwide1 exports +2030 **BCS Paris May 2025** BCS Sept. 2023 Worldwide hub for low-carbon industrial products BCS EU May 2024 BCS EU May 2024 Today's focus:

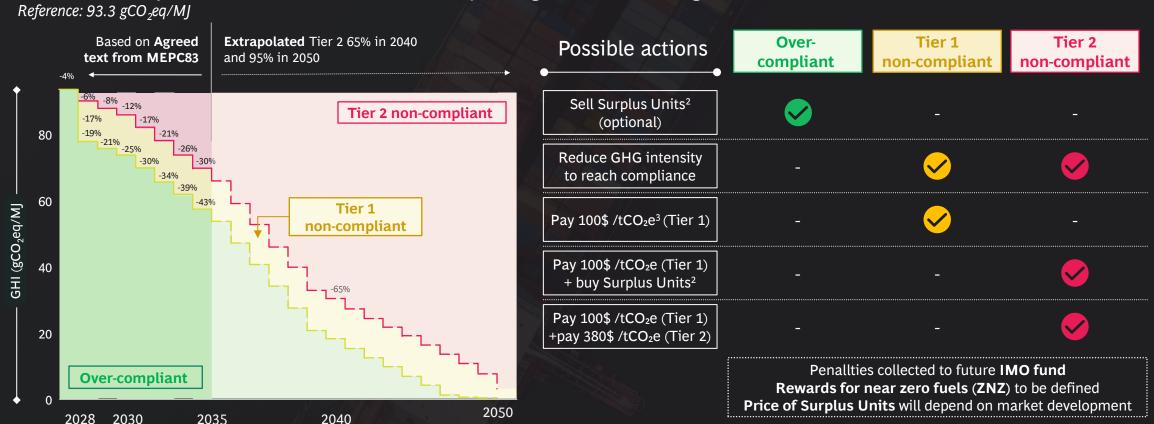
#1 country in Regenerative Agri. at scale (up to 100 Mha including Crop-Livestock-Forest Integration and non-till-farming) Potential to become a hub for sustainable biofuels - marine fuels as a lighthouse

Hub for green industrial products and minerals for energy transition

^{1.} Assume potential of NBS in a price-competitive scenario with carbon price at \$70/ton CO2; Source: BCG Analysis

Shipping represents ~1.2 Gt CO₂e of hard-to-abate emissions – IMO NZ Framework offers a pathway to sector decarbonization

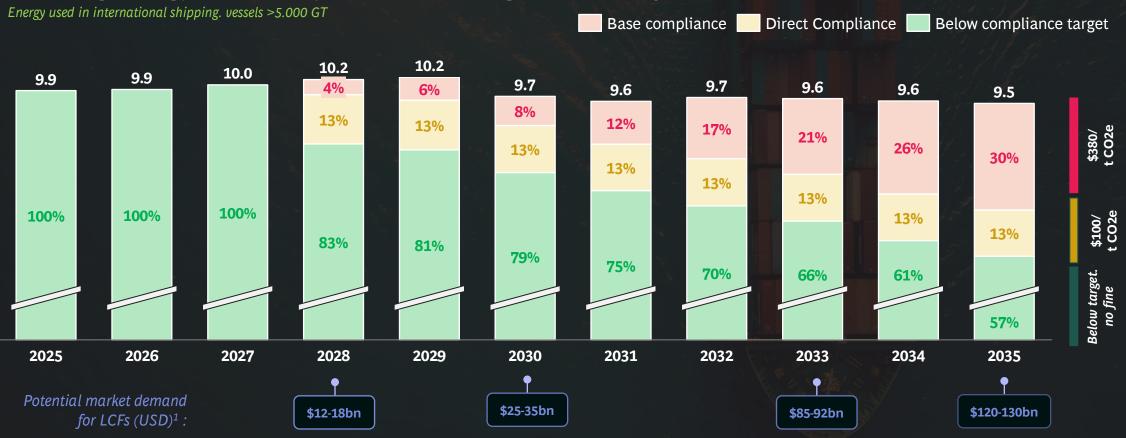
IMO Net Zero Framework (IMO NZF) key aspects²


Presented on 11 April 2025

- GHG-intensity decarbonization pathway with defined 2028–35 targets and a sector-wide market mechanism, agreed at Marine Environment Protection Committee 83rd session (MEPC 83)
- Global scope reflecting shipping's international jurisdiction and the large share of emissions governed by the IMO
- Proven track record by the IMO in implementing the 2020 global 0.50% m/m Sulphur cap, with robust enforcement and high compliance³
- <u>Next step</u>: Formal adoption at IMO's extraordinary MEPC session, MEPC/ES.2, mid October 2025
- COP30 could serve as a strong platform for advancement on shipping decarbonization, aligned with the Action Agenda (Key Objective #2)

^{1.} Source: B3. Inventário de emissões de gases de efeito estufa 2024: Apresentação de Resultados [Greenhouse Gas Emissions Inventory 2024: Results Presentation]. 2025. (Portuguese) 2. Presented on 11 April 2025, at the close of IMO's MEPC 83 (7–11 Apr, London); 3. Under MARPOL Annex VI Reg. 14, "IMO 2020" lowered the global sulphur limit in marine fuels to 0.50% m/m from 1 Jan 2020 (with 0.10% in ECAs) and introduced a carriage ban for non-compliant fuel from 1 Mar 2020; EU THETIS-EU inspections report >95% compliance. Note: IMO NZF = IMO Net-Zero Framework. Source: EDGAR 7.0; IEA; BCG Analysis

Considering IMO NZF, from 2028, vessels need to reduce emission intensity, face penalties of \$100–380/tCO₂e, or acquire surplus units


GHG intensity (GHI) reduction factors and pricing mechanism agreed on MEPC831

^{1.} Formal adoption at IMO's extraordinary MEPC session (MEPC/ES.2), 13–17 Oct 2025; 2. SU (Surplus Units) — MEPC 83: If a ship's annual GHG Fuel Intensity is below the Direct Compliance target, it earns SUs, which can be banked for up to two years or transferred once to offset another ship's Tier-2 deficit. 3. At Tier 1, credit purchases are not permitted; the only option is to pay the USD 100/tCO₂e penalty;

IMO Net Zero Framework could unlock up to \$120-130B market for sustainable fuels by 2035

Shipping energy demand by compliance target 2025-35 (EJ)

^{1.} SU: Surplus Units; 2. Example for representative 45kt MR conventional tanker - Annual & cumulative costs1 by scenario (MUSD). Note: The fuels shown are not exhaustive; some emerging fuels (e.g., e-diesel, HTL, pyrolysis oil) have been excluded for clarity.

New regulation can capitalize on positive momentum as key stakeholders are aligning to foster green shipping

Cargo owners

are starting to pay for more sustainable shipping

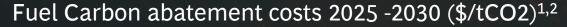
- 82% of cargo owners were willing to pay a premium for carbon-neutral shipping in 2024
- Commitments to scope 3 reductions drive an increase in WtP¹ - Zemba² has completed its 1st tender of 1B TEU-miles of zero-emission shipping
- Biofuel blends are increasingly being adopted on international shipping routes -In 2025, Citrosuco initiated its first long-haul voyage powered by 500 tons of B24³

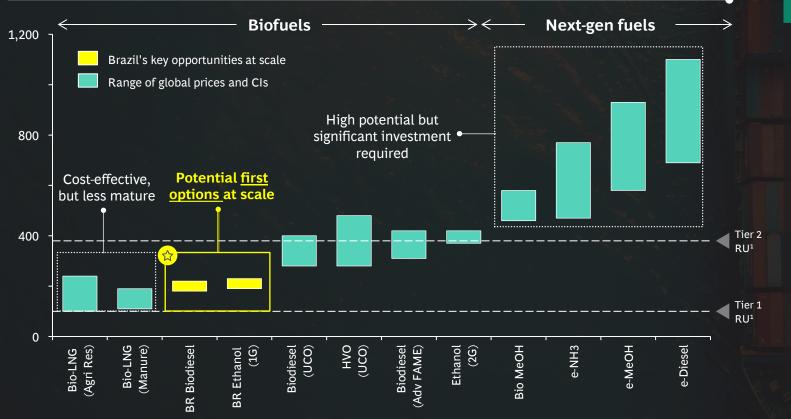
Shipping value chain

is moving to align supply and demand for greener alternatives

- +60 green shipping corridor projects —
 maritime routes promoting the use of lowemission solutions are currently underway
 worldwide
- Leading shippers are securing large offtake contracts Maersk signed a landmark methanol agreement with Goldwind for 500Kton/year
- Institutions are working to bridge supply and demand gaps - MMMCZCS FDA⁴ supports aggregation efforts to enable scaled offtake commitments

Financial institutions


are developing mechanisms to unlock access to climate capital


- Dedicated funds for maritime decarbonization are maturing —Eurazeo has already mobilized \$200M to unlock shipping low-emission assets
- Capital alignment frameworks are in place

 Poseidon Principles include 35
 institutions, covering ~80% of global
 maritime lending
- Innovative mechanisms are emerging to improve capital access - double auctions accelerate early market formation via demand and supply consolidations

^{1.} Willingness to pay 2. Zero Emission Maritime Buyers Alliance 3. Biodiesel blend, with 24% concentration of biofuel 4. Maersk Mc-Kinney Moller Center for Zero Carbon Shipping – Fuel Demand Aggregator project

Brazil can deliver near-term cost-competitive biofuels for marine decarbonization

Brazil key opportunities

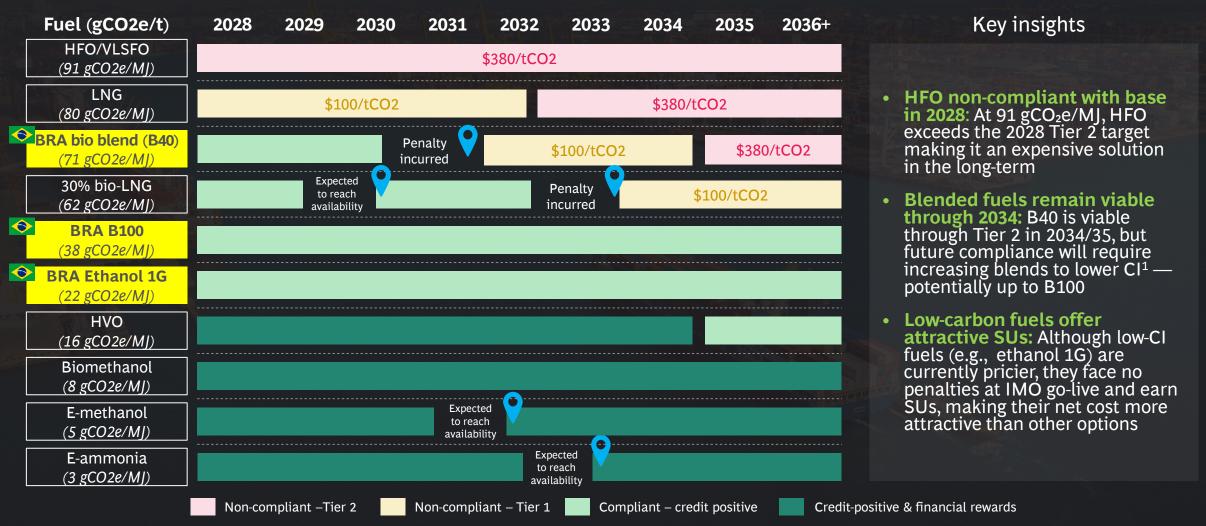
Short-medium term

Biodiesel and ethanol offer fast turnaround, cost-competitive, scalable alternatives, supported by degraded-land restoration

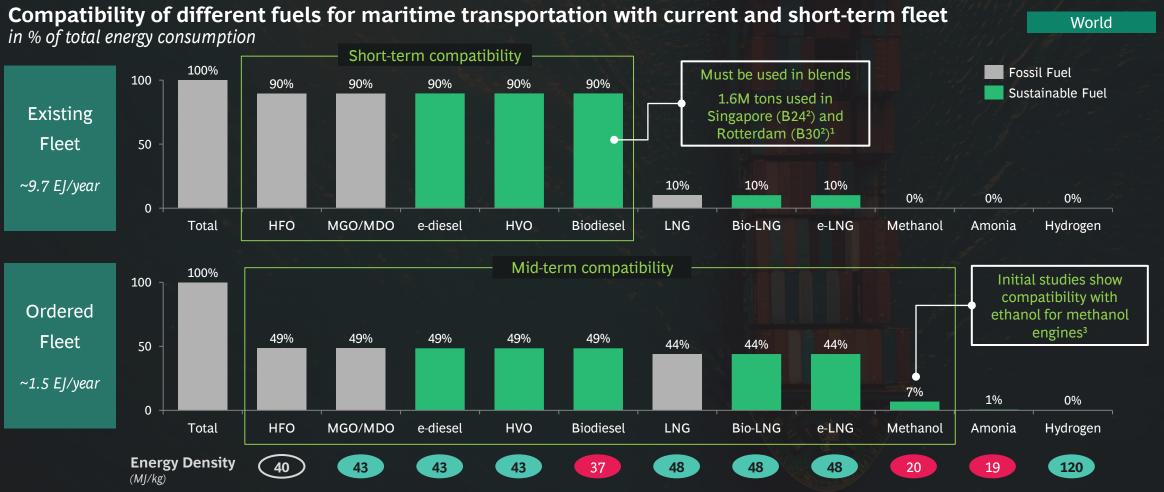
Deep dive ahead

Medium-long term

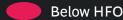
Bio-LNG potential in Brazil is significant, but will require more materiality of demand and development of distribution and liquefaction infrastructure

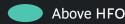

Long term

Brazil has strong next-gen fuel potential


— realization hinges on capital, tech readiness, and engine scaling

^{1.} Carbon abatement cost of fuels; excludes infrastructure, vessel operation, penalties, etc; Note: (a) The fuels shown are not exhaustive - emerging fuels (e.g., e-LNG, HTL, pyrolysis oil) have been excluded for clarity. (b) Biofuel costs assume minor changes in 2025-2030 period and don't account for potential supply constraints / scarcity due to competition induced by additional demand from IMO policies for shipping, that may lead to volatility / increase of fuel price. (c) In this study only fuel costs were analyzed: most biofuels are drop-in solutions requiring no changes to existing HFO or LNG fueled vessels and infrastructure thereof; next-gen fuels require additional CAPEX. but according to DNV and MMMCZCS, this has negligible impact on TCO compared to next-gen fuel costs. Fuel expenditures represent ~25-40% of TCO today; for next-gen fuels TCO share may rise to 60% during financing period and 80-90% after financing period Source: Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping; IMO - MEPC 83; GCMD; FuelEU Maritime; Argus; IEA; BCG analysis

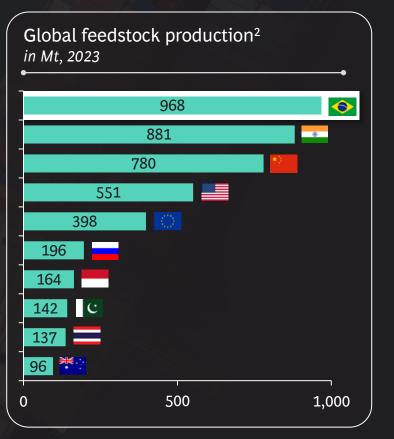

By 2028, IMO rules will render HFO and LNG non-compliant; cost-competitive alternatives must be secured to sustain supply



In addition to greener fuels' availability, engine compatibility is key to scaling; biodiesel stands out as a near-term sustainable solution

1. DNV - Maximizing the potential of biofuels in shipping; 2. 'BX' designates biodiesel blend levels—B24 contains 24% biodiesel; 3. Raízen press release: Raízen And Wärtsilä Sign Agreement to Accelerate Fleet Sustainability through Ethanol-Based Solutions
Source: IMO – Energy Efficiency of Ships 2024; ClassNK – Alternative Fuel Insights

Brazil's strategic advantages enable biofuel supply at global scale

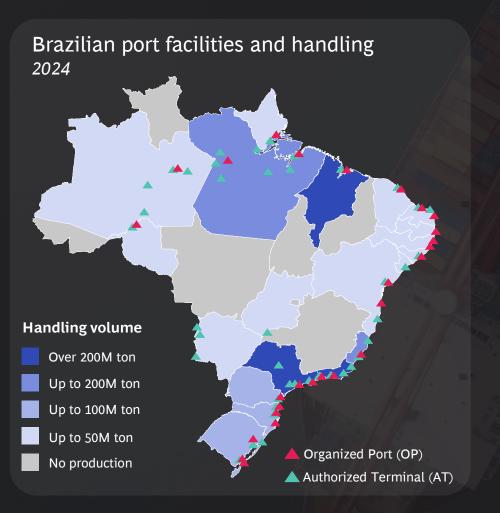


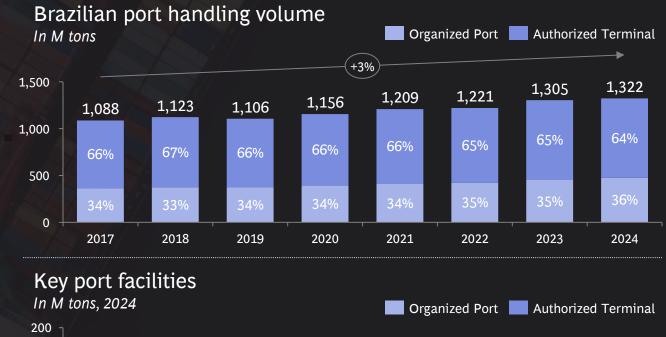
#5 worldwide in maritime traffic (~3% of global volume)

#1 worldwide producer of feedstock used for biofuels

#Key possibilities to unlock scale

Proposed Declaration of Intents for Green Shipping Corridor with countries such as France and Norway

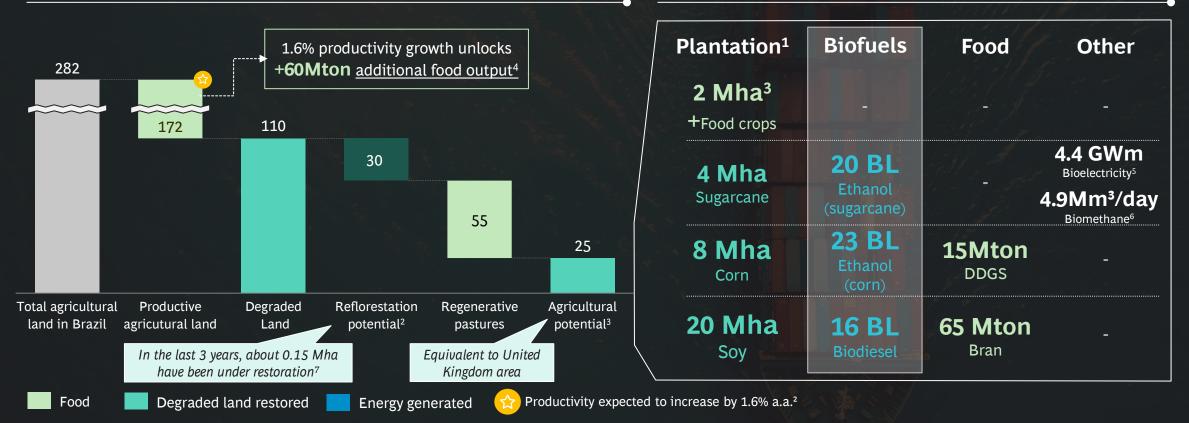

Restoring degraded pastureland in Brazil to increase the area available for biofuel production


Deep dive ahead

^{1.} Considers both total goods loaded and discharged; 2. Considers cereals, oilcrops, sugar crops, and treenuts; Source: FAO – Crops and livestock products (QCL) 2023; UNCTADstat - World seaborne trade by type of cargo, annual; Brazil Climate Summit; Brazilian Government

Conversion to 2005 by Dorton Consulting Crowns All rights recons

Brazil's port activity is rising - concentrate supply on the highest-traffic regions is key



Biofuel production can restore 25Mha of degraded land, while promoting reforestation and increasing food production

Potential uses for recovered pasturelands (in Mha) Final products generated

^{1.} There is overlapping planting (use of the same lands) for corn and soybeans; 2. Estimated based on Griscom, 2020 & Roe 2021, according to BCG Forestry NZE 2050 projections in Brazil; 3. The calculation considers only the difference between food-demand growth (1.85% p.a.) and productivity growth (1.6% p.a.); 4: Considering the current supply (only considered grains) of food of 312 Mton - Daniel Rittner, "Brasil virou 'celeiro do mundo' e já lidera exportações mundiais de sete alimentos, diz BTG," CNN Brasil, March 4, 2024; 5. Based on residual bagasse from ethanol production and 25% efficiency in electricity generation; 6. Generated from vinasse, a byproduct of ethanol production; 7. In the last 3 years, about 0.15 Mha have been under restoration Source: Embrapa; Conab; MapBiomas; Brazil Climate Summit (BCS); BCG analysis

yright © 2025 by Boston Consulting Group. All rights reserved


Biodiesel blends offers a near-term and cost-competitive decarbonization lever

Cost competitiveness of B24¹ compared with bunker²

In U\$ per GJ, assuming 38 gCO2eq/MJ for B100 and 91.7gCO2e/MJ for bunker

Biodiesel blends are **compatible** with conventional engines, covering ~90% of the current fleet⁴

Brazilian B100 differentials

35-38 gCO2e/MJ

Brazilian soybean biodiesel's WtW5 GHG intensity

220-230 \$/tCO2e

Abatement cost at BR ports, smaller than IMO \$380/tCO2e

280-300 \$/tco2e

Abatement cost at Rotterdam and Singapore ports, smaller than IMO \$380/tCO2e

1.'BX' designates biodiesel blend levels—B24 contains 24% biodiesel 2. Assuming penalties being paid, delivered at BR port; 3. Surplus units value will be defined by the market, consider value slightly lower than IMO carbon penalty 4. B24 blends are already in the market and are blended at the Rio Grande Terminal (TERIG) in Rio Grande, Rio Grande do Sul; 5. Well to Wake Note: Considering bunker prices at \$0.53/L and biodiesel prices at \$0.91/L; The number of Surplus Units is determined by the difference between the submitted fuel's GHG intensity and the IMO compliance targets

Source: Agência Nacional do Petróleo; Gás Natural e Biocombustíveis (ANP); IMO; General Index; BCG Analysis

Cost comparison highlights a viable case for biodiesel from Brazil, enabling blends cheaper than bunker around 2030

Cost competitiveness of B24¹ compared with bunker¹ over the years **Assuming Surplus Unit** In U\$ per GI, assuming 79 gCO2eq/MI for biodiesel and 91.7gCO2e/MI for bunker price of 350 \$ /tCO₂e² Phase 1 \longrightarrow Phase 2 \longrightarrow Phase 3 \rightarrow Phase 4 25 Bunker -22.6 21.3 20 19.6 17.0 16.8 18.3 16.6 16.4 16.4 16.4 17.4 By 2035, B24 could reduce ocean-freight 16.2 **15** costs by ~3% per 13.6 13.6 mton4 transported 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

Tier 1 non-compliant reduction factor (%)

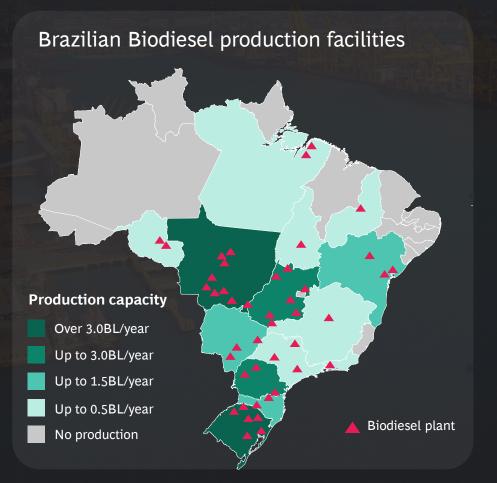
Phase 1

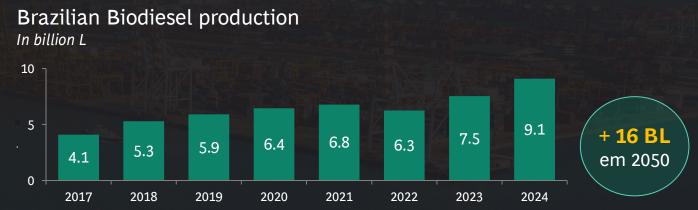
No IMO applications yet – price difference remains \$2.8 /GJ

Phase 2

Even though bunker fuel is **Tier 2–non-compliant** from IMO Year 1 onward, and B24 becomes **Tier 1–non-compliant**,
Bunker is still cheaper than B24 in Phase 2.
From this Phase, <u>decrease the share of biodiesel</u> would help cost competitiveness

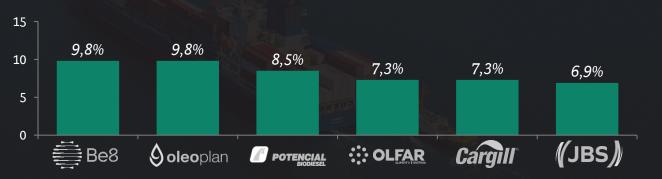
Phase 3


After 2030, B24 becomes cost-competitive, but there is a considerable increase of its price due to its entry into the Tier 2 non-compliant zone, alongside bunker fuel


Phase 4

43%

From 2032 onwards, B24 will remain in Tier 2 non-compliant and the price difference between fuels will remain constant — creating a great opportunity to increase the share of biodiesel in the blend


^{1.} Assuming a Brazil-Europe voyage averages 16 days, with the vessel consuming 80 tonnes of fuel per day; 2.. Assuming that 40% of freight costs are attributable to fuel, and considering a comparison based on the same route and vessel type Source: Agência Nacional do Petróleo; Gás Natural e Biocombustíveis (ANP); IMO; General Index; BCG Analysis

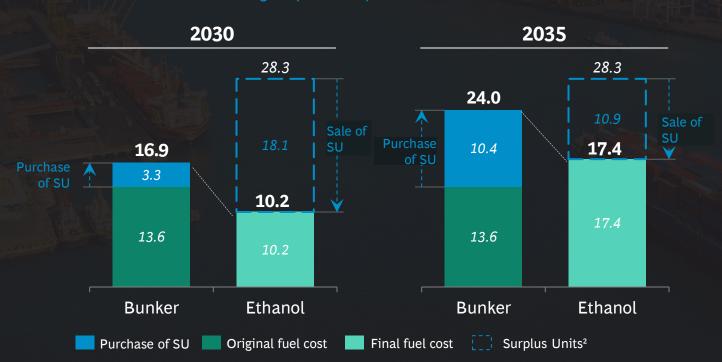
Key producers – Top 6 players

(% of volume sold, 2024)

^{1.} Centro Brasileiro de Relações Internacionais (CEBRI) - Alternativas de descarbonização para o setor de transporte marítimo no Brasil; 2. Assumes full B24 penetration across total sector fuel demand to meet equivalent energy needs

Note: Only authorized facilities; capacity considers an estimated 92% production factor

Source: Natural Earth States and Provinces boundaries without large lakes; Agência Nacional do Petróleo. Gás Natural e Biocombustível (ANP)


right © 2025 by Boston Consulting Group. All rights reserve

As engine technology evolves, ethanol offers scalable mid-term growth alternative, with surplus units ensuring cost-effectiveness

Cost competitiveness of ethanol compared with bunker¹
In U\$ per GI, assuming 22 gCO2e/MI for ethanol and 91.7gCOe/MI for bunker

Assuming Surplus Unit price of 350 \$ /tCO₂e³

Studies show compatibility of ethanol with methanol engines

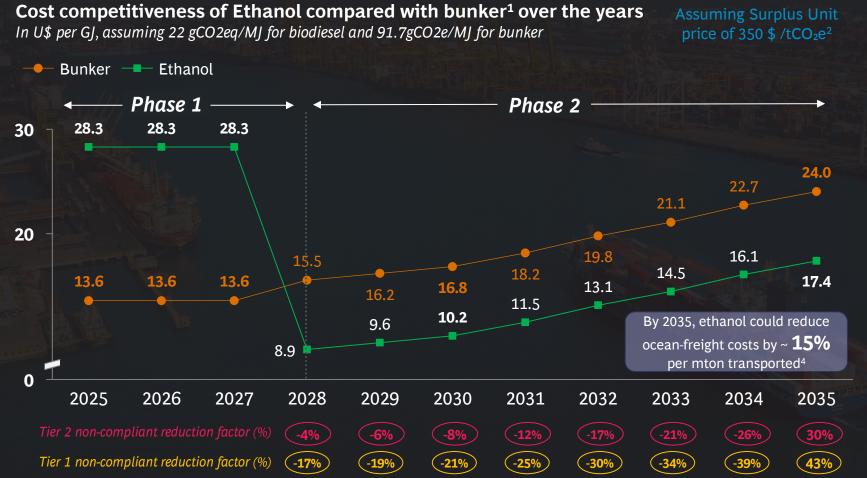
Brazilian ethanol differentials

20-22 gCO2e/MJ

Brazilian ethanol's WtW³ GHG intensity, corn ethanol with low CI given production in "safrinha"

205-210 \$/tco2e

Abatement cost at BR ports, smaller than IMO \$380/tCO2e


265-275 \$/tco2e

Abatement cost at Rotterdam and Singapore ports, smaller than IMO \$380/tCO2e

1.Assuming penalties being paid, delivered at BR port; 2. Surplus units value will be defined by the market, consider value slightly lower than IMO carbon penalty; 3. Well to Wake; Note: Considering bunker prices at \$0.53/L and ethanol prices at \$0.62/L; The number of Surplus Units is determined by the difference between the submitted fuel's GHG intensity and the IMO compliance targets

Source: Agência Nacional do Petróleo; Gás Natural e Biocombustíveis (ANP); IMO; General Index; BCG Analysis

Cost comparison highlights a viable case for ethanol in the beginning of IMO implementation

Phase 1

No IMO applications yet — price gap remains \$14.7/GJ, <u>driven by market differentials</u> and <u>lower energy density</u> (requiring higher ethanol volumes to cover the same route)

Phase 2

From 2028 onward, bunker moves into **Tier-2 non-compliance**. Ethanol stays in the **over-compliant zone** given its lower Carbon intensity and continues to generate SUs

With SUs costing \$350/tCO2e² versus IMO penalties at \$380/tCO2e, SUs are the cheaper compliance route

The price gap holds until ethanol reaches **Tier-1 non-compliance** (beyond 2035)

Source: Agência Nacional do Petróleo; Gás Natural e Biocombustíveis (ANP); IMO; General Index; BCG Analysis

^{1.} Assuming penalties being paid, delivered at BR port; 2. Surplus units value will be defined by the market, consider value slightly lower than IMO carbon penalty; 3. Well to Wake;

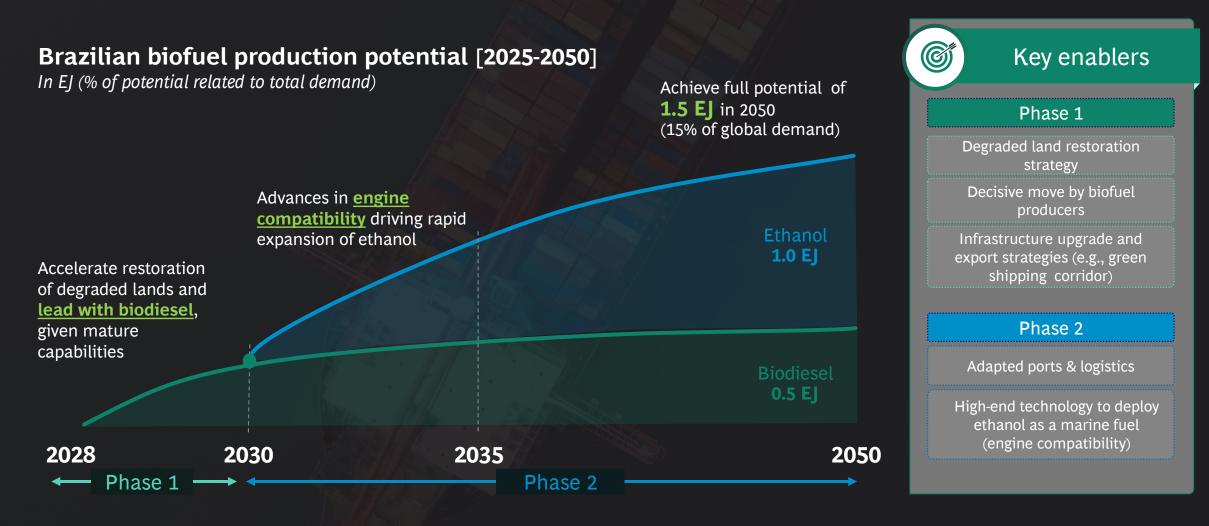
^{4.} Assuming that 40% of freight costs are attributable to fuel, and considering a comparison based on the same route and vessel type; Note: Considering bunker prices at \$0.53/L and ethanol prices at \$0.62/L;


Brazilian biofuels leverage the country's competitive advantages to deliver lower carbon intensity than global alternatives

- Brazil's crop yields are 3x higher than the global average
- Intercropping systems ("safrinha") optimize land use and fertilizer efficiency
- Extensive use of agricultural byproducts (corn DDGS, soybean bran, sugarcane bagasse)
- Brazil has been producing biofuels since the 1970s, building decades of expertise
- Strong public policy frameworks since the early 2000s have supported continuous sector growth and innovation
- Brazil has great access to clean energy, with +50% of its energy mix being renewable
 - Cane ethanol production enables energy cogeneration from bagasse, reducing fossil energy reliance
- Brazil has vast land areas with high CO₂ sequestration capacity, including deep soil layers
- Pastureland restoration for agriculture enhances soil carbon storage

It's critical that the IMO's carbon intensity definitions are based on robust technical analysis on carbon and sustainability levers, enabling a technology neutral approach to accelerate sustainable fuels adoption

Brazil has a unique position to supply biofuels to reduce shipping emission footprint


Shipping 2050 energy demand

^{1.} Considering \$53B investment required to recover degraded pasturelands and \$32B investment in CAPEX to scale production; 2. CAPEX estimates reflect only the biofuel production stage, without allocation to distribution or other value chain segments Source: Agência Nacional do Petróleo, Gás Natural e Biocombustível (ANP); Embrapa; IMO; EPE; Conab; Abiove; Raízen; Única; Unem; BCG Analysis

Copyright © 2025 by Boston Consulting Group. All rights reserved.

With key bottlenecks addressed, Brazil is positioned to become a leading global biofuels supplier

2025 by Boston Consulting Group. All rights reserve

Unlocking the potential of biofuels for shipping requires consolidation of regulatory framework and technology evolution

Regulatory final approval

Final MEPC 83 vote scheduled for the extraordinary session in mid October 2025

Carbon Intensity standards

Carbon accounting under discussion — important evolution towards product level standards

Incentive mechanisms definition

Rewards definition by IMO to be concluded by March 2027

Credibility of compliance

MEPC 83's success requires planning, execution and rigorous enforcement

Short term technology advancements

Methanol-capable engines available at scale to allow ethanol adoption

Copyright © 2025 by Boston Consulting Group. All rights reserved

Regulatory and infrastructure uncertainties required to be solved in the coming months/years

2025 2026 2027 2028 2029 2030 2031 2032 2033-2035+ Key risk Final MEPC83 **Implementation** MEPC83 enforced. 2027 penalty Penalty price reviewed for >> Post-2035 compliance milestones potential increase ratification approval targets apply payments due targets set **Fuel definitions in flux:** Penalty exposure: **Steep penalty increases:** Regulatory **Credit price volatility: Carbon intensity Regulatory uncertainty:** Penalty floor of \$100 and Potential penalty & policy Unclear where clearing price methodology still evolving; Final MEPC83 vote pending ceiling of \$380 tangible increases toward 2050 net lands, could be \$150 or \$350 importance of tech agnostic risks bottom-line threat zero goals acceptance of sust. fuels **Orderbook imbalance: Cutoff for dual-fuel Retrofit pressure: Yard** Mismatched fuel & Fleet lock-in: Most of Surge in LNG & Asset & capacity expected to be infrastructure: Limited newbuilds: Secure slots today's 100k vessels cannot methanol/ethanol infra. risks bottleneck with retrofit ammonia & other alt-fuel by Q4 2026 for delivery use alternative fuels newbuilds may outpace before 2028 bunkering surge fuel infra. **Green fuel shortage:** Race dynamics: Late **Biodiesel contract cutoff: LNG trap:** Strategic risk to Fuel supply Supply unlikely to cover **Price escalation: Biofuels** movers risk getting locked Secure a more sustainable commit only to LNG with & market demand through 2035; Brazil and methanol expected to out of access to viable and and cost effective approach no compliant path postpotential can reduce/close the spike with rising demand though all 2035 accessible fuels 2032

There is a good momentum to make announcements on shipping decarbonization in COP 30 – activation group 2 is directly related

Transitioning Energy, Industry and Transport

- 1 Tripling renewables and doubling energy efficiency
- 2 Accelerating zero and low emission technologies in hard-to-abate sectors
- 3 Ensuring universal access to energy
- Transitioning away from fossil fuels in a just, orderly and equitable manner

Stewarding Forests, Oceans and Biodiversity

- Investments to halt and reverse deforestation and forest degradation
- 6 Efforts to conserve, protect, and restore nature and ecosystems with solutions for climate. biodiversity and desertification
- Efforts to preserve and restore oceans and coastal ecosystems

Transforming Agriculture and Food Systems

- 8 Land restoration and sustainable agriculture
- More resilient, adaptive, and sustainable food systems
- 10 Equitable access to adequate food and nutrition for all

Building Resilience for Cities, Infrastructure and Water

- 11 Multilevel governance
- Sustainable and resilient constructions and buildings
- Resilient urban development, mobility and infrastructure
- Water management
- 15 Solid waste management

Fostering Human and Social Development

- Promoting resilient health systems
- 17 Reducing the effects of climate change on eradicating hunger and poverty
- 18 Education, capacitybuilding and job creation to address climate change
 - 19 Culture, cultural heritage protection and climate action

Unleashing Enablers and Accelerators including on Financing, Technology and Capacity Building

- 20 Climate and sustainable finance, mainstreaming climate in investments and insurance
- 21 Finance for adaptation
- 22 Climate integrated public procurement
- Harmonization of carbon markets and carbon accounting standards
- 24 Climate and trade
- Reduction of non-CO, gases

- 26 Governance, state capacities and institutional strengthening for climate action, planning and preparedness
- 27 Artificial Intelligence, Digital Public Infrastructure and digital technologies
- 28 Innovation, climate entrepreneurship and small and micro businesses
- 29 Bioeconomy and biotechnology
- Information integrity in climate change matters

Source: BCG analysis

