
Developing Software at the
Speed of the Cloud

The Boston Consulting Group (BCG) is a global
management consulting firm and the world’s
leading advisor on business strategy. We partner
with clients from the private, public, and not-for-
profit sectors in all regions to identify their
highest-value opportunities, address their most
critical challenges, and transform their enterprises.
Our customized approach combines deep insight
into the dynamics of companies and markets with
close collaboration at all levels of the client
organization. This ensures that our clients achieve
sustainable competitive advantage, build more
capable organizations, and secure lasting results.
Founded in 1963, BCG is a private company with
82 offices in 46 countries. For more information,
please visit bcg.com.

May 2015

David Mark, Mike Quinn, Saurabh Shah, and Sanjay Verma

Developing Software at the
Speed of the Cloud

2� Developing Software at the Speed of the Cloud

AT A GLANCE

Cloud developers are revising the rules for writing software and breaking new
barriers in releasing and updating code. Traditional software teams can learn from
cloud development teams about unleashing creativity and satisfying customers.

Smashing Functional Silos
Cloud teams have end-to-end responsibility. Development, testing, operations, data
instrumentation, and operational analytics all report to a common leader.

Living Software
Cloud teams continually update their code. To accommodate this dynamic process,
software needs to be modular and loosely coupled.

Embracing Automation
Cloud teams invest heavily in automation to improve efficiency and quality.

Connecting with Customers
Cloud teams also invest heavily in metrics that provide real-time customer insights
that allow teams to build software that meets customers’ exact needs.

The Boston Consulting Group� 3

For cloud teams, the
customer is not an
abstract concept but
a real-time and
constantly changing
composite of actual
behavior, usage, and
preferences.

Clouds may move across the horizon in slow motion, but they are the jet
rockets of software development. In today’s mobile, ubiquitous, and instanta-

neous world, cloud teams are running far ahead of traditional teams in writing and
releasing code. The cloud has also enabled these teams to become innovative and
efficient, and to deepen their ties with customers.

Traditional software teams have a lot to learn from cloud teams about unleashing
the creativity of their code writers. In fact, so do any companies that build software-
enabled products and services. In today’s landscape, in which software is embedded
into everyday objects, that means virtually all companies.

After working with world-class cloud teams, we uncovered four principles that guide
how they operate. These principles can help more traditional teams modernize their
software-development practices.

•• Smashing Functional Silos. Teams have end-to-end responsibility. Development,
testing, operations, data instrumentation, and operational analytics all report to
a common leader, creating a single point of accountability.

•• Living Software. Many teams still treat each software release as a singular event
and then move on to the next big thing. Cloud teams instead launch services
with the explicit understanding that they will be continually updating their
code. To accommodate this shift, software must be modular and loosely coupled.

•• Embracing Automation. Traditional software development has too much down-
time and manual checking and testing. Cloud teams invest heavily in automa-
tion to improve their efficiency and consequently the quality of their software.

•• Connecting with Customers. For cloud teams, the customer is not an abstract
concept but a real-time and constantly changing composite of actual behavior,
usage, and preferences. These teams have invested heavily in metrics that provide
real-time insights unavailable through more traditional customer-feedback
methods, such as focus groups. These insights show teams how customers are
using their products and services, allowing the teams to build software that meets
customers’ exact needs and even delights them.

Collectively, these principles push decision making down into the organization, en-
abling software developers to own their code, understand their customers, and con-
tinually improve their service. They also eliminate the traditional trade-offs that

4� Developing Software at the Speed of the Cloud

have long marked software development. Cloud teams are innovative and orga-
nized; they are agile without sacrificing quality.

Venture capitalist Marc Andreessen likes to say that software is “eating the world.”
Companies that fail to adopt these principles risk being eaten by those that do.

Smashing Functional Silos
Software has traditionally been developed sequentially, with the waterfall serving
as a rough metaphor for its progression. Separate groups conceive, design, build,
test, put into operation, and maintain software, with each group waiting for the pre-
vious group to complete its work.

This setup is fraught with high transaction costs. Participants can spend more time
sitting in meetings and managing handoffs across organizational boundaries than
writing and testing code. Disputes among these groups are often discovered late in
the game and have to be resolved by senior executives.

Cloud development organizations are flat. Many of their functions report to the
same manager. In addition, engineers in cloud teams often develop, test, deploy,
and maintain their own software or service.

In this setup, individual contributors have a better sense of how their decisions af-
fect the overall development and release of software, so there are fewer slowdowns
and do-overs. As one cloud manager put it, companies “need to have a single throat
to choke for each service.”

Leadership Structure
In many traditional software organizations, executives lead specific functions or
disciplines, such as development or testing. An unintended consequence of this
type of system is software complexity. To paraphrase Conway’s law, software mir-
rors the organizational context in which it is created. Software takes on the mish-
mash that results from trade-offs, handoffs, poor communication, and competing
organizational power bases. Most perniciously, there is little sense of ownership. In
fact, a static plan, which is often out of date shortly after it is written, determines
the outcome, rather than intimate customer connections. The final decision maker
is much closer to the CEO than to the development teams.

In cloud development organizations, executives tend to head cross-functional prod-
uct teams, rather than functional silos. All the functions required to deliver the
product or service report to them. (See Exhibit 1.) In addition, these leaders are re-
sponsible for revenue realization and the overall approach to marketing, sales, and
channels. When they need to adjust to changes in market or customer demand,
they have the authority to marshal resources without time-consuming and wasteful
negotiations with other parts of the organization.

New Roles and Responsibilities
Conventional wisdom and practice dictate that software teams separate develop-
ment, testing, and operations functions. To use a reference from Top Gun, develop-

Cloud development
organizations are flat.

Many of their func-
tions report to the

same manager.

The Boston Consulting Group� 5

ers are akin to “Maverick,” the creative risk-taking leader played by Tom Cruise,
while testers fall into the background as “Goose,” his reliable sidekick. This division
of labor was ostensibly created to promote accountability for each type of activity.
Instead, it caused management overhead.

Conventional wisdom is wrong. Cloud teams have developed a software engineer-
ing role that is responsible for not only writing but also testing and deploying fea-
tures. The idea of relinquishing operational control to traditional developers can
be daunting, so cloud teams build automated guardrails to ensure that testing and
deployment are of high quality despite democratization of control. They have found
that the productivity and quality gains of this organization design typically out-
weigh the risks. After all, who better to fix the code than the person who helped
write it?

As developers take on more of a traditional testing role, a new “end-to-end quality
engineering” role has emerged. Engineers in this role continually replicate and test
the customer experience to ensure that the user interface, speed, response time,
and overall quality are delighting customers. This role is crucial as customer envi-
ronments become more complex and fragmented. Software teams need to ensure
that their software works on public clouds, private clouds, on-premises servers,
desktops, mobile devices, and multiple operating systems. The end-to-end quality
engineers have this responsibility before, during, and after launch.

The product manager’s role is also fundamentally changing at cloud companies, as
software engineers assume more responsibility for scheduling and managing devel-
opment. The product manager is no longer responsible simply for “hitting a date”
but also for the business and operational success of the program. He or she has to
take on a more strategic, analytical, and technical role. The product manager de-
fines hypotheses and features that can be tested, prioritizes their development, and
continually monitors actual usage of those features. This manager is responsible for

Development
director

Development
managers

Functional
leader

Functional
leader

Operations
director

Operations
managers

Traditional model

Lead
engineer

The cloud model

Product leader

Developers

Test
director

Test
managers

Functional
leader

Testers Operations
engineers

Functional
leader

Product
management

director

Product
management

managers

Product
managers

Feature
engineers

End-to-end
quality

engineers
Product

managers

Exhibit 1 | Cloud Organizations Eliminate Silos

Source: BCG research and analysis.

6� Developing Software at the Speed of the Cloud

informing and training sales and marketing personnel, setting up partnership pro-
grams, developing a pricing framework, and monitoring pricing realization.

The role of data scientists is also becoming more prevalent at cloud companies.
Their sole responsibility is to interpret the incoming stream of information. Unlike
developers, they are not biased in favor of specific features and serve as honest
brokers to determine which emerging trends will have the biggest impact. (See
Exhibit 2.)

Living Software
To build cloud software, it’s not enough simply to create new organization struc-
tures and roles that facilitate continual development and constant updating. Com-
panies also need a software architecture that allows cloud teams to move quickly
and independently.

A cloud “product,” in fact, often consists of literally hundreds of microservices.
Cloud development organizations create small teams—usually, just 10 to 15 mem-
bers—that are responsible for a specific software module or service. The teams are
able to release their software independently. If a service needs a larger team, then
it probably has not been broken into small enough component parts.

Team Composition
All software teams are not staffed equally. Teams follow the same principles, but
their composition will vary significantly depending on the type of software under

• Oversees schedule and project
management

• Acts as proxy for customer

• Designs user interface, oen
late in the cycle

• Ensures that releases are tracked
• Tests the final bits to ensure

high quality
• Manages distribution of code

• Writes code
• Performs limited testing
• Has limited customer interaction

• Tests features
• Has limited customer interaction

Product manager

Customer experience
engineer

Data scientist

Release engineer

Developer

Tester

• Acts as product owner
• Prioritizes features and services
• Defines product strategy and differentiation
• Encourages customer engagement and usage analysis
• Acts as a bridge to marketing

• Owns holistic user experience, beyond just user
interface, across products and features

• Engages early in the development cycle

Feature engineering teams
• Write and deploy code
• Define architectural design
• Own both unit and functional tests
• Oversee schedule and project management
• Release the microservice or feature when ready

End-to-end quality engineering teams
• Validate customer scenarios
• Run horizontal testing and validation during

production

• Analyzes usage data to identify trends and insights
across features and services

• Has a pure data focus without feature bias

The cloud modelTraditional model

Exhibit 2 | The Shifting Roles of Software Development

Source: BCG research and analysis.

The Boston Consulting Group� 7

development. In our research, we found that software can be grouped into four ar-
chetypal categories on the basis of the complexity of customer interactions and
who (the company or the customer) controls software deployments.

A common benchmark of software development teams is the ratio of tradition-
al developers—whom we call “feature engineers”—to other members of the
team. As Exhibit 3 illustrates, these ratios can differ greatly depending on the
category.

When a software team internally controls an application or a service, such as con-
sumer cloud software, developers can directly write, launch, track, and adjust code
without engaging with the customer. This reduces the need for end-to-end quality
engineers, as illustrated in the boxes on the right side of the exhibit.

At the other extreme, when the customer controls and deploys the application or
service, as illustrated in the boxes on the left, feature engineers have less ability to
modify the software after launch and must address a more fragmented user base.
Accordingly, end-to-end quality engineers are necessary to serve as a proxy for cus-
tomer needs and to monitor deployments.

This model applies to the individual microservices that compose a product, not to
the product itself. A single product will frequently have services that fit within all
four categories. For example, the team launching an app on the iPhone will have a
very different composition from the team responsible for launching the app’s un-
derlying server infrastructure.

Mobile or
client app

High

Cloud
app

Server-based
app

Cloud
infrastructure

High

Complexity
of customer
interactions

Low

Customer
controlled

Deployment
cadence

Company
controlled

Feature engineers End-to-end quality engineers

Exhibit 3 | The Composition of the Development Team Varies

Source: BCG research and analysis.

8� Developing Software at the Speed of the Cloud

Modular Architecture
To support such decentralized team structures, cloud development organizations
build loosely coupled software modules that interact seamlessly with other mod-
ules. The loosely coupled modules typically sit on top of stable infrastructure soft-
ware. This approach allows developers to work flexibly—adding, replacing, and
changing individual modules while maintaining high quality and reliability.

In this environment, teams are no longer forced into large-scale monolithic annual
or quarterly release dates. Without the need to manage complex software integra-
tion, cloud teams can release features as they become ready. Features not ready for
prime time are “toggled” off in order to control what the customer sees while pre-
serving code integrity for easier version control.

Embracing Automation
Automation promotes speed in cloud software development, allowing teams to
launch frequently and independently while maintaining high-quality products. It is
often what separates the best software teams from the rest of the field.

Cloud teams invest heavily in tools to ensure that bugs and glitches are caught
quickly. With a single click, developers’ code can be checked in, tested, and de-
ployed. Automation serves as a safety net that notifies developers of small prob-
lems before they become large. These systems are not cheap, but they are critical
for teams that want to maintain quality.

New products are generally released as “canary builds” that are staged so that only
a small proportion of customers receive an update. If the software encounters is-
sues, the automated system can quickly roll back deployment without affecting the
entire customer base. If the software works as expected, it is automatically rolled
out sequentially to larger subsets of users and regions until full coverage is
achieved.

Automation improves the efficiency of software development teams by reducing
the time they spend in manual tasks such as check-in, testing, and deployment. This
downtime can reach 20 to 30 percent—or more than one day a week when devel-
opers are not using their creativity.

Connecting with Customers
The most successful software developers are not sitting in a silicon tower, imagining
what customers want. They have an intimate understanding of the features that
customers use and the roadblocks they encounter. These teams invest heavily in
systems that generate real-time usage metrics, and they constantly monitor this
data. Operational dashboards are generally updated every minute, while business
dashboards are updated daily. The code from these teams is written in a way that
allows detailed data and usage collection.

It should not be any surprise that cloud teams don’t rely on “gut feel” to make deci-
sions. They test a hypothesis and measure the result through frequent iterations

Automation promotes
speed in cloud

software develop-
ment, allowing teams

to launch frequently
and independently.

The Boston Consulting Group� 9

and A/B testing that compares usage of identical software except for one variation.
At cloud organizations, even marketing, documentation, and sales approaches are
tested in this way.

Cloud teams are also democratic in their dissemination of information. Test results
and other operational and usage metrics are available for anyone in the company
to see, opening the door for innovative thinking and cross-pollination of ideas.

All the Pieces Matter
In the television show The Wire, one of the main characters, a detective, frequently
says, “All the pieces matter,” meaning that every element of police investigations—
every wiretap, witness, and piece of the puzzle—is significant. All these principles
matter, too. To achieve breakthroughs in your software development, you need to
have all four principles in place.

Carefully instrumented code allows cloud companies to track usage and perfor-
mance in order to understand the market’s reaction to their software. The way the
code is written actually brings them closer to their customers. Modular software
speeds the reaction time of developers. To respond quickly to customer needs, they
can release new code without waiting for the other modules to be updated. Auto-
mation accelerates development time and efficiency, permitting developers to re-
lease their code rapidly, rather than waiting for other teams to catch up.

Collectively, usage metrics, modular software, and automation lay the groundwork
for development teams to have end-to-end responsibility for their code, which im-
proves innovation, customer responsiveness, and employee engagement.

Traditional software teams may not need to adopt a pure cloud model. But
they should try to become speedier and more innovative in their development

activities.

It’s not just talent and legacy systems, structures, and processes that are preventing
companies from fully adopting a cloud development model. It is also mind-set.
Teams have to be willing to break down the historical divide between development
and testing and to expand the roles and responsibilities of the software engineers.
They must view testing as an ongoing function, not an afterthought. They must be
willing to make significant investments in training, automation, and data-
capture-and-retrieval systems. (To see how your team measures up in cloud devel-
opment activities, see the sidebar, “The Transformation Journey.”)

A company’s success ultimately rests with its leaders. You need to challenge con-
ventional ways of working and delegate decision making down into the organiza-
tion. You need to give your best software developers a reason to be excited about
going to work in the morning and staying late at night. The closer you come to
adopting the cloud development model, the more success you’ll have in achieving
your goal of innovation and speed.

Cloud teams are also
democratic in their
dissemination of
information. Test
results and other
operational and usage
metrics are available
for anyone in the
company to see.

10� Developing Software at the Speed of the Cloud

This way of working under the cloud
development model is a significant
departure from tradition. The princi-
ples are straightforward, but the
transformation journey is not simple.
Companies must change across four
dimensions.

Principles. Communicate a focused
vision to the development organiza-
tion based on the principles of the
cloud software-development model.

Metrics. Set up well-defined targets
and timelines to reach them. The
exhibit below outlines a set of leader-
ship metrics that can serve as a ba-
rometer of your progress toward your
goals. Your performance and incen-
tive structure needs to be consistent
with these metrics. For example, as
developers take on greater testing
responsibility, the quality and speed
of their output may decline. However,
this setback will be short-lived if you

have the right metrics and monitoring
infrastructure in place.

People. Redefine roles for developers,
testers, and product and operations
managers, and create a flatter organi-
zation structure on the basis of prod-
ucts and services rather than func-
tional silos. Exhibit 3 can help you
create the optimal team composition.

Technology. Automate check-in and
deployment, create loosely coupled
architecture, enable code sharing
across teams, and write instrumented
code that facilitates real-time analysis.

The goal of the cloud development
model is to enable faster develop-
ment and more powerful customer
connections. By aligning your organi-
zation’s principles, metrics, people,
and technology, you can change the
trajectory of your business and your
relationship with customers.

THE TRANSFORMATION JOURNEY

• Build Time: Occurs in seconds
• Check-in Time: Takes less than five minutes
• Level of automation: 100%
• Code Access: All engineers can review and check out code

Engineering
system

• Engagement: Measured by high user growth and low churn
• Usage: Success is defined as first or second place in market share
• Customer Experience: Defined by high customer-satisfaction

levels, low levels of crashes, and strong performance on service
level agreement

Customer
connection

• Cloud Services: Continuous, oen daily deployments
• Mobile or Store Apps: Monthly releases, daily internal releases
• On-Premises Services: Quarterly feature updates, monthly

service releases

• Data Access: Ease of data access across the team
• Experimentation: All engineers can create a feature A/B test
• Data Availability: Operational metrics available in less than a

minute; business metrics available in less than an hour

Data-driven
decision
making

Fast code
releases

Source: BCG research and analysis.

The Best Cloud Teams Monitor Metrics

The Boston Consulting Group� 11

About the Authors
David Mark is a senior partner and managing director in the San Francisco office of The Boston
Consulting Group and the global leader of the technology sector. You may contact him by e-mail at
mark.david@bcg.com.

Mike Quinn is a project leader in the firm’s Detroit office. You may contact him by e-mail at
quinn.mike@bcg.com.

Saurabh Shah is a project leader in BCG’s Los Angeles office. You may contact him by e-mail at
shah.saurabh@bcg.com.

Sanjay Verma is a partner and managing director in the firm’s San Francisco office. You may con-
tact him by e-mail at verma.sanjay@bcg.com.

Acknowledgments
The authors would like to thank the executives who agreed to be interviewed in the preparation of
this report. These conversations enriched our understanding of cloud software and sharpened our
conclusions. We would also like to thank our colleagues Thomas Krenik, Jérôme Moreau, and
Daina Paulikas for their help in conducting the analysis and strengthening the arguments. Finally,
we thank Astrid Blumstengel and Amanda Provost for marketing support, Mark Voorhees for writ-
ing assistance, and Katherine Andrews, Gary Callahan, Kim Friedman, Abigail Garland, Sharon
Slodki, and Sara Strassenreiter for their editorial and production support.

For Further Contact
Please contact one of the authors if you would like to discuss the insights and conclusions of this
report and how they can be applied to your company.

12� Developing Software at the Speed of the Cloud

To find the latest BCG content and register to receive e-alerts on this topic or others, please visit bcgperspectives.com.

Follow bcg.perspectives on Facebook and Twitter.

© The Boston Consulting Group, Inc. 2015. All rights reserved.
5/15

Abu Dhabi
Amsterdam
Athens
Atlanta
Auckland
Bangkok
Barcelona
Beijing
Berlin
Bogotá
Boston
Brussels
Budapest
Buenos Aires
Calgary
Canberra
Casablanca

Chennai
Chicago
Cologne
Copenhagen
Dallas
Detroit
Dubai
Düsseldorf
Frankfurt
Geneva
Hamburg
Helsinki
Ho Chi Minh City
Hong Kong
Houston
Istanbul
Jakarta

Johannesburg
Kiev
Kuala Lumpur
Lisbon
London
Los Angeles
Luanda
Madrid
Melbourne
Mexico City
Miami
Milan
Minneapolis
Monterrey
Montréal
Moscow
Mumbai

Munich
Nagoya
New Delhi
New Jersey
New York
Oslo
Paris
Perth
Philadelphia
Prague
Rio de Janeiro
Riyadh
Rome
San Francisco
Santiago
São Paulo
Seattle

Seoul
Shanghai
Singapore
Stockholm
Stuttgart
Sydney
Taipei
Tel Aviv
Tokyo
Toronto
Vienna
Warsaw
Washington
Zurich

bcg.com

